OCO-3 was assembled using spare materials from the Orbiting Carbon Observatory-2 satellite.[4] Because the OCO-3 instrument is similar to the OCO-2 instrument, it is expected to have similar performance with its measurements used to quantify CO2 to 1 ppm precision or better at 3 Hz.[9]
History and timeline
24 February 2009 - Orbiting Carbon Observatory was launched on a Taurus XL rocket but failed to achieve orbit when the fairing failed to separate from the satellite.[10]
1 February 2010 - The 2010 President's budget included funding for development and re-flight of an OCO replacement.[11]
After arrival - Robotic installation onto Exposed Facility Unit 3 (EFU 3) on the JEM-EF.[19]
Instrument design
OCO-3 is constructed from spare equipment from the OCO-2 mission. Thus its physical characteristics are similar, but with some adaptations. A 2-axis pointing mirror was added, which will allow targeting of cities and other areas on order of 100 by 100 km (62 by 62 mi) for area mapping (also called "snapshot mode").[3][17][19] A 100 m (330 ft) resolution context camera was also added.[17] An onboard cryocooler will maintain detector temperatures of around −120 °C (−184 °F).[20] Entrance optics were modified to maintain a similar ground footprint to OCO-2.[3]
Similar to OCO and OCO-2, the main measurement will be of reflected near-IR sunlight. Grating spectrometers separate incoming light energy into different components of the electromagnetic spectrum (or wavelengths or "colors"). Because CO2 and molecular oxygen absorb light at specific wavelengths, the signal or absorption levels at different wavelengths provide information on the amount of gases.[20] Three bands are used called Weak CO2 (around 1.6 μm), Strong CO2 (around 2.0 μm), and Oxygen-A (around 0.76 μm).[3] There are 1,016 spectral elements per band, and measurements are made simultaneously at 8 side-by-side locations or "footprints" each about 4 km2 (1.5 sq mi) or smaller, 3 times per second.
Expected data use
Overall measurements from OCO-3 will help quantify sources and sinks of carbon dioxide from terrestrial ecosystems, the oceans, and from anthropogenic sources. Due to the ISS orbit, measurements will be made at latitudes less than 52°. Data from OCO-3 are expected to significantly improve understanding of global emissions from human activities, for example, using measurements over cities.[9] Near simultaneous observations from other instruments onboard the International Space Station such as ECOSTRESS (measuring plant temperatures) and Global Ecosystem Dynamics Investigation lidar (measuring forest structure) may be combined with OCO-3 observations to help improve the understanding of the terrestrial ecosystem. Similar to OCO-2, OCO-3 will also measure Solar Induced Fluorescence which is a process that occurs during plant photosynthesis.[3][21]
^Eldering, Annmarie (2013). The OCO-3 Mission: An Overview(PDF). 9th International Workshop on Greenhouse Gas Measurements from Space. 29–31 May 2013. Yokohama, Japan.