Norbert Perrimon is a French geneticist and developmental biologist. He is the James Stillman Professor of Developmental Biology in the Department of Genetics at Harvard Medical School, an Investigator at the Howard Hughes Medical Institute, and an Associate of the Broad Institute. He is known for developing a number of techniques for used in genetic research with Drosophila melanogaster, as well as specific substantive contributions to signal transduction, developmental biology and physiology.
Education
Perrimon was born in 1958 in Bosguérard-de-Marcouville, France. He earned his undergraduate degree (Maitrise of Biochemistry) at the University of Paris VI, in 1981, then completed his doctorate in 1983 with Madeleine Gans, also at the University of Paris.
Perrimon's group developed many methods that have significantly improved the Drosophila toolbox. Perrimon co-developed the GAL4/UAS system method with Andrea Brand to control gene expression in Drosophila.[8] This method has been described as “a fly geneticist's Swiss army knife”[9] and is widely used in Drosophila genetics. Together with Tze-bin Chou, he developed the FLP-FRT DFS method to generate germline mosaics, a method that allowed the large-scale characterization of the maternal effect of zygotic lethal mutations.[10][11][12] He developed and improved methods in vivo RNAi with Janquan Ni.[13][14][15] His lab has pioneered high-throughput whole-genome RNAiscreening to interrogate systematically the function of all fly genes in various cell-based assays.[16][17][18][19][20][21][22] With Ram Viswanatha, he developed CRISPR/Cas9 pooled screens in Drosophila cells to facilitate large-scale screen in Drosophila and other arthropod cell lines.[23] The approach is particularly powerful to identify the mechanism of entry of toxins.[24]
In 2003 he created the Drosophila RNAi Screening Center at Harvard Medical School and in 2008, he initiated the Transgenic RNAi Project to generate transgenic RNAi lines for the community using optimized shRNA vectors that his lab developed.
^Perrimon, N; Mahowald, A. P. (1986). "L(1)hopscotch, A larval-pupal zygotic lethal with a specific maternal effect on segmentation in Drosophila". Developmental Biology. 118 (1): 28–41. doi:10.1016/0012-1606(86)90070-9. PMID3095163.
^Perrimon, N; Mahowald, A. P. (1987). "Multiple functions of segment polarity genes in Drosophila". Developmental Biology. 119 (2): 587–600. doi:10.1016/0012-1606(87)90061-3. PMID3803719.
^Perrimon, N; Gans, M (1983). "Clonal analysis of the tissue specificity of recessive female-sterile mutations of Drosophila melanogaster using a dominant female-sterile mutation Fs(1)K1237". Developmental Biology. 100 (2): 365–73. doi:10.1016/0012-1606(83)90231-2. PMID6418585.
^White, R. A.; Perrimon, N; Gehring, W. J. (1984). "Differentiation markers in the Drosophila ovary". Journal of Embryology and Experimental Morphology. 84: 275–86. PMID6442733.
^Perrimon, N.; Engstrom, L.; Mahowald, A. P. (1984). "The effects of zygotic lethal mutations on female germ-line functions in Drosophila". Developmental Biology. 105 (2): 404–414. doi:10.1016/0012-1606(84)90297-5. PMID6479445.