The Möbius function can alternatively be represented as
where is the Kronecker delta, is the Liouville function,
is the number of distinct prime divisors of , and is the number of prime factors of , counted with multiplicity.
Gauss[1] proved that for a prime number the sum of its primitive roots is congruent to .
If denotes the finite field of order (where is necessarily a prime power), then the number of monic irreducible polynomials of degree over is given by[5]
The Möbius function also arises in the primon gas or free Riemann gas model of supersymmetry. In this theory, the fundamental particles or "primons" have energies . Under second quantization, multiparticle excitations are considered; these are given by for any natural number . This follows from the fact that the factorization of the natural numbers into primes is unique.
In the free Riemann gas, any natural number can occur, if the primons are taken as bosons. If they are taken as fermions, then the Pauli exclusion principle excludes squares. The operator
that distinguishes fermions and bosons is then none other than the Möbius function .
Proof: Given two coprime numbers , we induct on . If , then . Otherwise, , so
The sum of the Möbius function over all positive divisors of (including itself and 1) is zero except when :
The equality above leads to the important Möbius inversion formula and is the main reason why is of relevance in the theory of multiplicative and arithmetic functions.
Other applications of in combinatorics are connected with the use of the Pólya enumeration theorem in combinatorial groups and combinatorial enumerations.
There is a formula[7] for calculating the Möbius function without directly knowing the factorization of its argument:
i.e. is the sum of the primitive -th roots of unity. (However, the computational complexity of this definition is at least the same as that of the Euler product definition.)
Other identities satisfied by the Möbius function include
and
.
The first of these is a classical result while the second was published in 2020.[8][9] Similar identities hold for the Mertens function.
One way of proving this formula is by noting that the Dirichlet convolution of two multiplicative functions is again multiplicative. Thus it suffices to prove the formula for powers of primes. Indeed, for any prime
and for any
,
while for
.
Other proofs
Another way of proving this formula is by using the identity
The formula above is then a consequence of the fact that the th roots of unity sum to 0, since each th root of unity is a primitive th root of unity for exactly one divisor of .
However it is also possible to prove this identity from first principles. First note that it is trivially true when . Suppose then that . Then there is a bijection between the factors of for which and the subsets of the set of all prime factors of . The asserted result follows from the fact that every non-empty finite set has an equal number of odd- and even-cardinality subsets.
This last fact can be shown easily by induction on the cardinality of a non-empty finite set . First, if , there is exactly one odd-cardinality subset of , namely itself, and exactly one even-cardinality subset, namely . Next, if
, then divide the subsets of into two subclasses depending on whether they contain or not some fixed element in . There is an obvious bijection between these two subclasses, pairing those subsets that have the same complement relative to the subset . Also, one of these two subclasses consists of all the subsets of the set , and therefore, by the induction hypothesis, has an equal number of odd- and even-cardinality subsets. These subsets in turn correspond bijectively to the even- and odd-cardinality -containing subsets of . The inductive step follows directly from these two bijections.
A related result is that the binomial coefficients exhibit alternating entries of odd and even power which sum symmetrically.
If is prime, then , but the converse is not true. The first non prime for which is . The first such numbers with three distinct prime factors (sphenic numbers) are
for every natural number n. This function is closely linked with the positions of zeroes of the Riemann zeta function. See the article on the Mertens conjecture for more information about the connection between and the Riemann hypothesis.
In combinatorics, every locally finite partially ordered set (poset) is assigned an incidence algebra. One distinguished member of this algebra is that poset's "Möbius function". The classical Möbius function treated in this article is essentially equal to the Möbius function of the set of all positive integers partially ordered by divisibility. See the article on incidence algebras for the precise definition and several examples of these general Möbius functions.
Popovici's function
Constantin Popovici[12] defined a generalised Möbius function
to be the -fold Dirichlet convolution of the Möbius function with itself. It is thus again a multiplicative function with
where the binomial coefficient is taken to be zero if . The definition may be extended to complex by reading the binomial as a polynomial in .[13]
^Hardy & Wright, Notes on ch. XVI: "... occurs implicitly in the works of Euler as early as 1748, but Möbius, in 1832, was the first to investigate its properties systematically". (Hardy & Wright 1980, Notes on ch. XVI)
^In the Disquisitiones Arithmeticae (1801) Carl Friedrich Gauss showed that the sum of the primitive roots () is , (see #Properties and applications) but he didn't make further use of the function. In particular, he didn't use Möbius inversion in the Disquisitiones.[1] The Disquisitiones Arithmeticae has been translated from Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.
Abramowitz, Milton; Stegun, Irene A. (1972) [1964]. Handbook of mathematical functions: with formulas, graphs and mathematical tables [conference under the auspices of the National science foundation and the Massachusetts institute of technology]. Dover books on advanced mathematics. New York: Dover. ISBN978-0-486-61272-0.
Gauss, Carl Friedrich (1965). Untersuchungen uber hohere Arithmetik (Disquisitiones Arithemeticae & other papers on number theory). Translated by Maser, H. (2nd ed.). New York: Chelsea. ISBN0-8284-0191-8.