Lyndon–Hochschild–Serre spectral sequence Topic in mathematics
In mathematics , especially in the fields of group cohomology , homological algebra and number theory , the Lyndon spectral sequence or Hochschild–Serre spectral sequence is a spectral sequence relating the group cohomology of a normal subgroup N and the quotient group G /N to the cohomology of the total group G . The spectral sequence is named after Roger Lyndon , Gerhard Hochschild , and Jean-Pierre Serre .
Statement
Let
G
{\displaystyle G}
be a group and
N
{\displaystyle N}
be a normal subgroup . The latter ensures that the quotient
G
/
N
{\displaystyle G/N}
is a group, as well. Finally, let
A
{\displaystyle A}
be a
G
{\displaystyle G}
-module . Then there is a spectral sequence of cohomological type
H
p
(
G
/
N
,
H
q
(
N
,
A
)
)
⟹
H
p
+
q
(
G
,
A
)
{\displaystyle H^{p}(G/N,H^{q}(N,A))\Longrightarrow H^{p+q}(G,A)}
and there is a spectral sequence of homological type
H
p
(
G
/
N
,
H
q
(
N
,
A
)
)
⟹
H
p
+
q
(
G
,
A
)
{\displaystyle H_{p}(G/N,H_{q}(N,A))\Longrightarrow H_{p+q}(G,A)}
,
where the arrow '
⟹
{\displaystyle \Longrightarrow }
' means convergence of spectral sequences .
The same statement holds if
G
{\displaystyle G}
is a profinite group ,
N
{\displaystyle N}
is a closed normal subgroup and
H
∗
{\displaystyle H^{*}}
denotes the continuous cohomology.
Examples
Homology of the Heisenberg group
The spectral sequence can be used to compute the homology of the Heisenberg group G with integral entries, i.e., matrices of the form
(
1
a
c
0
1
b
0
0
1
)
,
a
,
b
,
c
∈
Z
.
{\displaystyle \left({\begin{array}{ccc}1&a&c\\0&1&b\\0&0&1\end{array}}\right),\ a,b,c\in \mathbb {Z} .}
This group is a central extension
0
→
Z
→
G
→
Z
⊕
Z
→
0
{\displaystyle 0\to \mathbb {Z} \to G\to \mathbb {Z} \oplus \mathbb {Z} \to 0}
with center
Z
{\displaystyle \mathbb {Z} }
corresponding to the subgroup with
a
=
b
=
0
{\displaystyle a=b=0}
. The spectral sequence for the group homology, together with the analysis of a differential in this spectral sequence, shows that[ 1]
H
i
(
G
,
Z
)
=
{
Z
i
=
0
,
3
Z
⊕
Z
i
=
1
,
2
0
i
>
3.
{\displaystyle H_{i}(G,\mathbb {Z} )=\left\{{\begin{array}{cc}\mathbb {Z} &i=0,3\\\mathbb {Z} \oplus \mathbb {Z} &i=1,2\\0&i>3.\end{array}}\right.}
Cohomology of wreath products
For a group G , the wreath product is an extension
1
→
G
p
→
G
≀
Z
/
p
→
Z
/
p
→
1.
{\displaystyle 1\to G^{p}\to G\wr \mathbb {Z} /p\to \mathbb {Z} /p\to 1.}
The resulting spectral sequence of group cohomology with coefficients in a field k ,
H
r
(
Z
/
p
,
H
s
(
G
p
,
k
)
)
⇒
H
r
+
s
(
G
≀
Z
/
p
,
k
)
,
{\displaystyle H^{r}(\mathbb {Z} /p,H^{s}(G^{p},k))\Rightarrow H^{r+s}(G\wr \mathbb {Z} /p,k),}
is known to degenerate at the
E
2
{\displaystyle E_{2}}
-page.[ 2]
Properties
The associated five-term exact sequence is the usual inflation-restriction exact sequence :
0
→
H
1
(
G
/
N
,
A
N
)
→
H
1
(
G
,
A
)
→
H
1
(
N
,
A
)
G
/
N
→
H
2
(
G
/
N
,
A
N
)
→
H
2
(
G
,
A
)
.
{\displaystyle 0\to H^{1}(G/N,A^{N})\to H^{1}(G,A)\to H^{1}(N,A)^{G/N}\to H^{2}(G/N,A^{N})\to H^{2}(G,A).}
Generalizations
The spectral sequence is an instance of the more general Grothendieck spectral sequence of the composition of two derived functors. Indeed,
H
∗
(
G
,
−
)
{\displaystyle H^{*}(G,-)}
is the derived functor of
(
−
)
G
{\displaystyle (-)^{G}}
(i.e., taking G -invariants) and the composition of the functors
(
−
)
N
{\displaystyle (-)^{N}}
and
(
−
)
G
/
N
{\displaystyle (-)^{G/N}}
is exactly
(
−
)
G
{\displaystyle (-)^{G}}
.
A similar spectral sequence exists for group homology, as opposed to group cohomology, as well.[ 3]
References
^ Knudson, Kevin (2001). Homology of Linear Groups . Progress in Mathematics. Vol. 193. Basel: Birkhäuser Verlag . doi :10.1007/978-3-0348-8338-2 . ISBN 3-7643-6415-7 . MR 1807154 . Example A.2.4
^ Nakaoka, Minoru (1960), "Decomposition Theorem for Homology Groups of Symmetric Groups", Annals of Mathematics , Second Series, 71 (1): 16– 42, doi :10.2307/1969878 , JSTOR 1969878 , for a brief summary see section 2 of Carlson, Jon F.; Henn, Hans-Werner (1995), "Depth and the cohomology of wreath products", Manuscripta Mathematica , 87 (2): 145– 151, CiteSeerX 10.1.1.540.1310 , doi :10.1007/BF02570466 , S2CID 27212941
^ McCleary, John (2001), A User's Guide to Spectral Sequences , Cambridge Studies in Advanced Mathematics, vol. 58 (2nd ed.), Cambridge University Press , ISBN 978-0-521-56759-6 , MR 1793722 , Theorem 8bis .12
Lyndon, Roger C. (1948), "The cohomology theory of group extensions", Duke Mathematical Journal , 15 (1): 271– 292, doi :10.1215/S0012-7094-48-01528-2 , ISSN 0012-7094 (paywalled)
Hochschild, Gerhard ; Serre, Jean-Pierre (1953), "Cohomology of group extensions", Transactions of the American Mathematical Society , 74 (1): 110– 134, doi :10.2307/1990851 , ISSN 0002-9947 , JSTOR 1990851 , MR 0052438
Neukirch, Jürgen ; Schmidt, Alexander; Wingberg, Kay (2000), Cohomology of Number Fields , Grundlehren der Mathematischen Wissenschaften , vol. 323, Berlin: Springer-Verlag, ISBN 978-3-540-66671-4 , MR 1737196 , Zbl 0948.11001