Huprine X is a synthetic cholinergic compound developed as a hybrid between the natural product Huperzine A and the synthetic drug tacrine. It is one of the most potent reversible inhibitors of acetylcholinesterase known, with a binding affinity of 0.026nM,[1] as well as showing direct agonist activity at both nicotinic and muscarinic acetylcholine receptors.[2][3] In animal studies it has nootropic and neuroprotective effects, and is used in research into Alzheimer's disease,[4][5][6][7] and although huprine X itself has not been researched for medical use in humans, a large family of related derivatives have been developed.[8][9][10]
References
^Camps P, Cusack B, Mallender WD, El Achab RE, Morral J, Muñoz-Torrero D, Rosenberry TL (February 2000). "Huprine X is a novel high-affinity inhibitor of acetylcholinesterase that is of interest for treatment of Alzheimer's disease". Molecular Pharmacology. 57 (2): 409–17. PMID10648652.
^Roman S, Vivas NM, Badia A, Clos MV (June 2002). "Interaction of a new potent anticholinesterasic compound (+/-)huprine X with muscarinic receptors in rat brain". Neuroscience Letters. 325 (2): 103–6. doi:10.1016/s0304-3940(02)00245-8. PMID12044632. S2CID30405842.
^Roman S, Badia A, Camps P, Clos MV (January 2004). "Potentiation effects of (+/-)huprine X, a new acetylcholinesterase inhibitor, on nicotinic receptors in rat cortical synaptosomes". Neuropharmacology. 46 (1): 95–102. doi:10.1016/j.neuropharm.2003.08.005. PMID14654101. S2CID19189750.
^Ratia M, Giménez-Llort L, Camps P, Muñoz-Torrero D, Clos MV, Badia A (June 2010). "Behavioural effects and regulation of PKCalpha and MAPK by huprine X in middle aged mice". Pharmacology, Biochemistry, and Behavior. 95 (4): 485–93. doi:10.1016/j.pbb.2010.03.013. PMID20363245. S2CID34525530.
^Ratia M, Giménez-Llort L, Camps P, Muñoz-Torrero D, Pérez B, Clos MV, Badia A (2013). "Huprine X and huperzine A improve cognition and regulate some neurochemical processes related with Alzheimer's disease in triple transgenic mice (3xTg-AD)". Neuro-Degenerative Diseases. 11 (3): 129–40. doi:10.1159/000336427. PMID22626981. S2CID46024586.
^Giménez-Llort L, Ratia M, Pérez B, Camps P, Muñoz-Torrero D, Badia A, Clos MV (April 2017). "Behavioural effects of novel multitarget anticholinesterasic derivatives in Alzheimer's disease". Behavioural Pharmacology. 28 (2 and 3-Spec Issue): 124–131. doi:10.1097/FBP.0000000000000292. PMID28125507.
^Ronco C, Sorin G, Nachon F, Foucault R, Jean L, Romieu A, Renard PY (July 2009). "Synthesis and structure-activity relationship of Huprine derivatives as human acetylcholinesterase inhibitors". Bioorganic & Medicinal Chemistry. 17 (13): 4523–36. doi:10.1016/j.bmc.2009.05.005. PMID19473849.
^Ronco C, Foucault R, Gillon E, Bohn P, Nachon F, Jean L, Renard PY (May 2011). "New huprine derivatives functionalized at position 9 as highly potent acetylcholinesterase inhibitors". ChemMedChem. 6 (5): 876–88. doi:10.1002/cmdc.201000523. PMID21344648. S2CID10893910.
^Galdeano C, Viayna E, Sola I, Formosa X, Camps P, Badia A, et al. (January 2012). "Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer's and prion diseases". Journal of Medicinal Chemistry. 55 (2): 661–9. doi:10.1021/jm200840c. PMID22185619.