H-derivative

In mathematics, the H-derivative is a notion of derivative in the study of abstract Wiener spaces and the Malliavin calculus.[1]

Definition

Let be an abstract Wiener space, and suppose that is differentiable. Then the Fréchet derivative is a map

;

i.e., for , is an element of , the dual space to .

Therefore, define the -derivative at by

,

a continuous linear map on .

Define the -gradient by

.

That is, if denotes the adjoint of , we have .

See also

References

  1. ^ Victor Kac; Pokman Cheung (2002). Quantum Calculus. New York: Springer. pp. 80–84. doi:10.1007/978-1-4613-0071-7. ISBN 978-1-4613-0071-7.


 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia